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ABSTRACT

This report summarizes research conducted under NASA Grant NAG8-

1130 on the topic "Substructure System Identification for Finite Element Model

Updating." It covers the period of the grant from April 19, 1995 until August,

31, 1996. The research concerns ongoing development of the Substructure

.System Identification Algorithm (SSID Algorithm), a system identification al-

gorithm that can be used to obtain mathematical models of substructures, like

Space Shuttle payloads. In the present study, particular attention was given to

the following topics: making the algorithm robust to noisy test data, extending

the algorithm to accept experimental FRF data that covers a broad frequency

bandwidth, and developing a test analytical model (TAM) for use in relating

test data to reduced-order finite element models.

This report summarizes research described in the following technical re-

port and papers and presents some overall conclusions and recommendations.

Bound Technical Report

* Blades, E. L., and Craig, R. R., Jr., A Frequency-Domain Substructure

System Identification Algorithm, Ref. [1].

Papers Presented at Technical Meetings

• Craig, R., and Blades, E., "Substructure System Identification - Reduced-

Order Models," Ref. [2].
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• Blades, E. L., and Craig, R. R., Jr., "Frequency-DomainSubstructure

SystemIdentification," Ref. [3].

• Blades, E. L., and Craig, R. R., Jr., "A Craig-Bampton Test-Analysis

Model," Ref. [4].

• Craig, R. R., Jr., and Blades,E. L., "A Band-ProcessingAlgorithm for

Structural SystemIdentification," Ref. [5].
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Chapter 1

INTRODUCTION

This report summarizes the research accomplished in the Structural Dy-

namics Laboratory of the Department of Aerospace Engineering and Engineer-

ing Mechanics at The University of Texas at Austin under the sponsorship of

NASA Grant NAG8-1130. Under the sponsorship of NASA Grant NAG9-670

with NASA Johnson Space Center, the author, together with graduate stu-

dents Wiede Cutshall and Eric Blades, developed a "preliminary" version of

the Substructure System Identification Algorithm, an algorithm for reducing

FRFs from a vibration test to test-derived mass, damping, and stiffness ma-

trices. The major research accomplishments under that grant are described in

the reports and presentations listed in Refs. [6-10]. Reference [7] summarizes

that work. At the conclusion of that work, a version of the SSID algorithm

had been developed that was capable of identifying M, C, and K matrices

from simulated noise-free FRFs of acceleration responses at all degrees of free-

dom of the model and FRFs for reaction-forces. Reference [10] describes early

efforts to identify reduced-order models from "noisy" FRFs. That work indi-

cated that the SSID algorithm was not yet robust enough to identify correct

reduced-order mass, damping, and stiffness matrices for other than very-low-

order models (< 10 DOF).

In the present study particular attention was given to the following top-
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ics: making the algorithm robust to noisy test data, extending the algorithm

to accept FRF data that covers a broad bandwidth, and developing a test ml-

alytical model (TAM) for use in relating test data to finite element models in

the Craig-Bampton format [11].

The stated goals for this research were:

1. to develop a version of the SSID algorithm that incorporates model reduc-

tion, and to relate SSID-identified substructure math models to reduced-

order finite-element-based Craig-Bampton math models, thus demon-

strating test verification of Craig-Bampton models; and

2. to use laboratory tests and simulation studies to assess the feasibility

of conducting a full-scale Space Shuttle Payload test using the extended

SSID method.

To achieve the above-stated goals the following two tasks were proposed:

1. Incorporate model reduction into the present SSID algorithm to obtain an

algorithm for Substructure _System Identification with Model Reduction

(SSID-MR).

2. Apply the SSID-MR substructure identification method developed in

Task 1 by performing simulation studies and by conducting vibration

tests of representative substructure hardware. Develop a preliminary

test/analysis plan for applying SSID-MR procedures in an actual pay-

load model-verification test.
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Chapter 2 of this report reviewsthe basicSSID Algorithm, while Chapt.

3 presentsextendedabstractsof the technical papersand report covering re-

searchunder the presentgrant. Conclusionsbasedoll this researchare given

in Chapt. 4. A samplecomputer run is provided in Appendix A.



Chapter 2

BASIC SUBSTRUCTURE SYSTEM

IDENTIFICATION ALGORITHM

To introduce the SSID Algorithm, Chapt. 3 of Ref. [1], which summarizes

the basic SSID algorithm, is reproduced in the present chapter. The major new

research accomplishments are described in the publications and presentations

that are summarized in Chapt. 3 of this report.

2.1 Introduction

The SSID Algorithm is a new frequency-domain identification method

that can be used to obtain a linear viscous-damped model of a substructure 1.

Every interface degree of freedom is either actively excited by a shaker with

the input measured or is supported by the test stand with the reaction forces

measured. The substructure is "isolated" from the test stand by measuring

the reaction force; thus the substructure can be identified. In addition, test-

stand dynamics are automatically taken into account, so there is no need for

a separate modal test or for a finite element model of the test stand. This

procedure makes it possible to obtain not only the fixed-interface modal data

for a Craig-Bampton substructure model, but also the data associated with the

1Although designed especially to facilitate accurate testing of substructures, the algorithm
can be considered to be a "general-purpose" structural system identification algorithm.



constraint modes.

An overview of the theoretical derivation of the proposed SSID Algo-

rithm, which is a two-stepidentification process,is provided in this chapter. A

completedescription of the algorithm is given in Ref. [6].

2.2 Identification of M-1C and M-1K

Assume that the substructure has viscous damping and that the total

number of motion transducers (accelerometers) is at least twice the expected

number of normal modes in the frequency range of interest 2. Every interface

degree of freedom is to have a co-located actuator/sensor (force/accelerometer)

pair. In addition, there are to be motion sensors (accelerometers) at selected

interior degrees of freedom.

Let the equations of motion in physical coordinates and the output equa-

tion be

Mit + C5_ + Kx = Dp(t) (2.1)
y = $5:

where x E R N_ is the displacement vector; p E R N_ is the input force vector;

y E R N_ is the output measurement vector; M, C, and K are the system mass,

damping, and stiffness matrices, respectively; D is the force distribution matrix;

and S is the acceleration sensor distribution matrix. For the present discus-

sion, we will assume that the above Nx-degree-of-freedom model represents a

2This restriction may be relaxed by the method described in Sect. 3.3.1.
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reduced-ordermodel of the structure. Let the coordinatesbepartitioned in the

following manner:

x,x - - (2.%
Xb Xr

\-- --]

where f stands for _forced DOFs (i.e., DOFs where there is an active force

input); r stands for reaction DOFs (i.e., interface DOFs where the tested sub-

structure reacts against the support structure); i stands for interior DOFs (i.e.,

DOFs where neither an active force is applied nor a reaction is measured);

and b stands for boundary DOFs, the combination of f-coordinates and r-

coordinates. These sets of coordinates are illustrated in Fig. 2.1.

\ /\ /
Substructure Being Tested Test Stand

Figure 2.1: Substructure Model - Vibration Test Configuration

Equation 2. la can be written in the following partitioned form (damping

is omitted here):

Mii Mi! Mi.

M/, MH MI. K/_ K:: I,::.
K,i K,I K,..

{"}x/

Xr

= [Dip(t) (2.3)



Let us considerthe complexfrequencyresponseof the substructure due

to excitation at frequencya_k,but with the interior DOFs force-free. Then.

{ )pk(t) - pl(t) = P(cZk)eJ_t =- R(czk)p.(t) k

(From Eq. 2.4 onward, the vectors can be complex.) The complex displacement

response can be written as

zk(t) = X(._k)d_' (2.5)

and similar expressions can be obtained for velocity, etc. Then, the frequency-

domain version of Eq. 2. la is

[ (,)1 ] { )
The experimental data input to the algorithm is complex, but the system

matrices to be identified are real. To insure that real matrices will be deter-

mined, a procedure from Ref. [12] is used. After some algebraic manipulation,

the following equation is obtained for estimating the matrices C, /_, b I and

[d R bs J.]

!t_ L_t,w j "_Ljwj

L-m'_.l

-_lHss] -_lHss]
-_[H.s] -g[H.s]

= [-_[Ho/] --_[/-/:sl] (2.7)
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where

= M-1C , I4 = M-1K , D! = M-ID/ , and D,.=M-1Dr (2.8)

and the H matrices are measured frequency response function (FRF) matrices

and _[.] and 3[.] denote the real part and the imaginary part of the given

quantity, respectively. The data used in Eq. 2.7 is stacked in the following

manner:

__;H,,mf_(wl) ... __1 H 1jwl aNxfNl (031) "'" JwN_ HaNzfNl (OJN'_)

(2.9)

The other partitions of the data in Eq. 2.7 are formed similarly.

A least-squares solution of Eq. 2.7 is required. A further discussion of

least-squares solution procedures is given in Sect. 3.2.

2.3 Identification of M, C, and K

In the previous section, an algorithm was described for identifying the

system matrices C,/_, and/), which are defined by Eqs. 2.7. Prom the system

matrices C, /4, and/), we wish to determine the system matrices M, C, K,

and D, especially the first three. The first step is to perform an eigensolution

using the matrices identified from Eq. 2.7. Let Ns --- 2Nx, and let us define the

state variable
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and state matrices

x } (2.10)

[ o'] /°] / 11/
Then the following eigenproblem is solved for the complex eigenvalues Ar and

the complex eigenvectors/}r:

[_r_is+ _)slOr= o r = 1,...,N_ (2.12)

To determine the system matrices M, C, and K, a mode-superposition

representation of the complex frequency response can be employed. Using the

eigenvectors, 0,, let the mode-superposition solution for the states z be

N,

z(t) = _ 0_'y_(t) = OF(t) (2.13)
r=l

where orthogonality holds in the following form:

OTAs(_ = diag(ar), (_TBsO = diag(b,.) (2.14)

with

[c 0] /21 /As = M 0 ' 0 -M

The following modal-response equations are obtained:

5¢_(t) + D,%(t) = OTDsp(t) (2.16)
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The mode-superpositionsolution leads,eventually,to the followingacceleration

frequencyresponse:

where

No

Ak=--wkXk=E -_ Rkr }, DPk
r=l

(2.17)

Pk - { F( k) }

=(
Rk, \jwk - )_, ]

(2.18)

(2.19)

As in the derivation of Eq. 2.7, assume that averaged frequency-response

data are available at N_ frequencies, so Eq. 2.17, averaged at each of these

frequencies, leads to the following equation:

r= 1 _rf

If Eq. 2.20 is postmultiplied by G_, the following expression for the aceeleranee

FRF matrix is obtained:

N. [ 1" ] (2.21)

Now, the left-hand and right-hand sides of Eq. 2.21 are matrices of dimension

Nx x N I. Let f_ indicate the jth column of each side of this equation. Then,

write the jth column of Eq. 2.21 in the form

H,I, = y_ (1)JR,, {t_,}, {0x} T] [DID,] IH_ (2.22)
,=I H, Ij

Finally, let Eq. 2.22 be repeated for each of the N_, frequencies and N! forces,

and the resulting equations stacked vertieally to form the following equation:



ll

Ho:,(_) }
H,_/, (cON_,)

I-IoIN:(_N_)

En El2 ... E1,N,

EN,_,I EN_,,2 ... EN,_,N,

Ell E12 ... El,No

ENd,,1 ENd,2 .. • ENd,N,

1/al}.
1/(ZNo

(2.23)

where

(2.24)

Equation 2.23 is the key equation that is required to estimate the system

matrices M, C, and K. It is used to obtain least squares estimates of the Ns

modal parameters 5r. The corresponding modal parameters br can then be

computed from

b, = --ArSr r = 1,...,N, (2.25)

With these values of _r and b,, the state matrices A, and Bs, defined by

Eqs. 2.15, are computed by using Eqs. 2.14, written in the form

As = e-Tdiag(_)0 -1

Bs = O-Tdiag(b,)6-' (2.26)
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Finally, the system matrices M, C, and K are obtained by referring to Eqs. 2.15

and extracting the appropriate partitions of the As and Bs matrices that are

obtained from Eq. 2.26.



Chapter 3

ABSTRACTS OF TECHNICAL PAPERS AND

REPORTS

Extended abstracts of publications describing research conducted under

the subject grant are presented in this chapter.

3.1 A Frequency-Domain Substructure System Identi-

fication Algorithm- (Ref. [1])

Reference [1] describes the research that was conducted on the SSID Al-

gorithm under the present grant. Various aspects of this research were discussed

in presentations at technical meetings (Refs. [2-5]).

As previously noted, Chapt. 3 of Ref. [1] summarizes the basic SSID

Algorithm. Chapter 4 is a development of a test-analytical model (TAM) based

on the Craig-Bampton reduced-order component mode synthesis (CMS) model.

This CB-TAM, in contrast to other TAMs like the Guyan-Irons TAM, permits

analytical Craig-Bampton models to be more directly compared to test data.

Reference [4] is based on this chapter.

Chapters 5 and 6 of Ref. [1] discuss the remaining four major topics

that were studied: full-order and reduced-order models from noise-free data,

least-squares solution methods for processing noisy data, narrow-band data

processing, and use of pseudo DOFs to expand model order. The simulation

13
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studies presentedin Chapt. 6 were basedon a 52-DOF NASTRAN model of

the "payload simulator" shownin Fig. 3.1.

T

"" FI 13

J , J
Figure 3.1: Payload Simulator Finite Element Model

The following conclusions were reached:

• The SSID Algorithm identified to within 0.25% all elements of the full-

order mass, damping, and stiffness matrices of a 52-DOF structure from

noise-free simulated test data. The input consisted of one applied force

and two applied moments.

• The effects of spatial truncation (limited number of accelerometers) and

frequency truncation (limited frequency bandwidth) were studied. Based

on the results obtained for 10-DOF, 12-DOF, and 16-DOF reduced-order

models of the 52-DOF structure, it was concluded that the algorithm is

capable of identifying valid reduced-order structural models from noise-

free data. However, the best estimation of a reduced-order model of a
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givenorder is obtained whenthe input frequencyrangecontainsonly the

correspondingnumberof modes.

• Three least-squaresmethods, ordinary least-squares (OLS), total least-

squares (TLS), and scaled total least-squares (STLS), were used to solve

the over-determined system of linear equations, Eq. 2.7. No acceptable

solution for any of the reduced-order models was ever obtained when the

OLS method was used. Both the TLS method and the STLS method

successfully identified 10-DOF and 12-DOF reduced-order models of the

52-DOF structure. However, none of the three solution methods obtained

an acceptable 16-DOF reduced-order model from noisy data, a situation

that led to the study of band processing of the data.

• A technique called band processing was shown to successfully identify

reduced-order structural models from noisy broad-bandwidth FRF data.

• Pseudo degrees of freedom were examined as a way to expand the model

size when there are fewer output sensors than there are modes present in

the data.

• The system matrices identified by the SSID algorithm were compared to

other test-analysis models, and it was found that the SSID reduced-order

models represent the dynamic characteristics of the structure as well as,

if not better than, the other TAMs do.

• The SSID reduced-order models provide the information necessary to ob-

tain the fixed-interface modal data associated with the Craig-Barnpton



16

substructure model and also the data associatedwith the constraint

modes.

3.2 Substructure System Identification - Reduced-Order

Models- (Ref. [2])

This paper describes the performance of various least-squares equation

solvers used for identifying reduced-order models from noisy test data. The

theory part of the paper is based on Sect. 5.1 of Ref. [1]. The simulations

described in the paper are based on an 18-DOF Z-translation-only model of

the payload simulator shown in Fig. 3.1.

3.2.1 Least-Squares Equation Solvers

The ordinary least-squares (OLS) method and the more recent total

least-squares (TLS) method are mathematical modeling procedures used to

solve an under-determined or over-determined system of linear equations. Both

parameter identifications, Eqs. 2.7 and 2.23, can be cast in the form

AX _ B (3.1)

The approximate sign is used to emphasize that the data is contaminated by

noise. If there is no noise in the data, then Eq. 3.1 will be an equality. The OLS

method and the TLS method seek solutions that minimizes the error between

the true system model and the measured data.

Perhaps the best known method of solution for an over-determined sys-

tem of linear equations is the OLS method. For simplicity, consider the case
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when d = 1. In the OLS approach, the measurements of the variables in the

data matrix A are assumed to be free of error, and all errors are assumed to

be confined to the observation vector b. The OLS method will result in an

unbiased estimate if the error model is of the form

Ax ,_ {b0 + Ab} (3.2)

The TLS method [13] produces estimates that are generated from a sys-

tem of linear equations where it is assumed that both the data matrix A and

the observation vector b contain errors. The error model for the TLS method

is of the form

[Ao + AA]{x} _ {b0 + Ab} (3.3)

Further details concerning these least-squares methods is given in Sect.

5.1 of Ref. [1]

3.2.2 Numerical Examples

Simulated noisy test data was used to assess the ability of the SSID

system-identification procedure, with OLS and TLS solvers, to identify valid

reduced-order models. A finite element (FE) model of the parallel-beam "pay-

load simulator" in Fig. 3.1, reduced from 54 DOFs to the 18 Z-translational

DOFs, was used as the "true" system. Modal damping at a level of 2% was

added to obtain a damping matrix for the FE model. The payload simulator

was hung from soft springs ("bungee cords") at nodes 11, 13, 14, and 16; and

was excited in the z direction at all three interface nodes: 4, 8, and 18. Iden-
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tification of both a full-order model and a reduced-ordermodel are illustrated.

In the latter case,OLS resultsand TLS results are compared.

Identification of the Full-Order Model

The first simulation wasof the full-order model without any noiseon the sim-

ulated FRF data. The SSID identification was basedon 256 frequency lines

uniformly spaced from 0.5 Hz to 2000 Hz. The undamped natural frequencies

of the 18-DOF system, which range from 1.15 Hz to 8597 Hz, were all iden-

tified exactly (to within 7-digit accuracy), even though two of the undamped

natural frequencies are well above the 2000 Hz upper limit of the FRF data.

All simulations were programmed using MATLAB TM [14].

Figures 3.2a through 3.2c show the percent errors in individual terms of

the mass, damping, and stiffness matrices of the 18-DOF full-order model. The

error "spikes" in Figs. 3.2a through 3.2c are all very small and are due to the

stiff elements that connect nodes 9 and 18 and nodes 10 and 17, respectively 1.

Identification of Reduced-Order Models

System identification tests of real structures are typically based on (sometimes

triaxial) measurements taken at 25 to 500 nodes, whereas finite element models

of the (infinite-DOF) structures are generally of the order of 1000 to 100,000

DOFs. In order to test the performance of the SSID Algorithm in identifying

reduced-order models, simulated tests were performed on the "payload simula-

tor" by eliminating the FRF test data at four nodes (2, 3, 6, 7), reducing the

1Multipoint constraints between DOFs 9 and 18 and DOFs l0 and 17 were later introduced
to reduce the original 54-DOF FE model to a 52-DOF model.
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Figure 3.2: Percent errors in elements of the substructure matrices.
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system from an 18-DOF systemto a 14-DOFsystem.

The first reduced-ordersimulation was run without addedmeasurement

noise in order to examine the effectof spatial filtering of the data. The SSID

identification wasbasedon simulated FRF data generatedat 1021frequency

lines equally spacedat 0.5 Hz between2 Hz and 512Hz. Sincespatial filtering

to obtain a reduced-ordermodel introduces bias error in the data, the TLS

method was used, even though there was no random "measurementnoise"

addedfor this case.Basedon the SSID-identified14-DOFreduced-ordermodel,

twelve of the fourteen undampednatural frequencieswereidentified to within

0.5%. Figure 3.3 showsa comparisonof an exact driving-point FRF and the

correspondingFRF basedon the SSID-identified14-DOFreduced-ordermodel.

Next, in order to simulate actual test conditions,noisewasaddedto pro-

duce "measured"FRFs for a simulated 14-DOF reduced-ordertest. Random

noisewas added to the magnitude and phaseof the "measured"FRFs, with

the amount of noisespecifiedin terms of the maximum percentageof the RMS

magnitude of each FRF and a maximum angle error on phase. Signal averaging

was employed in these simulations, just as averaging would be employed in an

actual test. The two least-squares methods, the ordinary least-squares (OLS)

method and the total least-squares (TLS) method, were used to solve the two

over-determined sets of equations, Eqs. 2.7 and 2.23.

Simulated FRF data was generated at 1021 frequency lines equally spaced

at 0.5 Hz between 2 Hz and 512 Hz. For these simulations 3% amplitude noise

and 3 ° phase noise was added to generate "measured" FRFs. These FRFs were

averaged over N = 100 samples.
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Figure 3.3: Exact driving-point FRF and FRF based on reduced-order SSID

model (no noise).
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In Table 3.1, the natural frequencies generated from the OLS- and TLS-

estimated 14-DOF M and K matrices are compared to the first fourteen exact

undamped natural frequencies of the full-order (18-DOF) system and to the

SSID-identified undamped natural frequencies based on noise-free (NF) FRFs.

Figure 3.4a shows a comparison between an exact driving-point FRF and the

Table 3.1: Natural frequencies (Hz) of 14-DOF reduced-order models

[ Mode]

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Exact NF % Err OLS % Err TLS % Err

1.1543 1.1564 0.18 1.1360 1.3771 19.30

6.0384

10.783

6.0489

10.783

0.17

0.00

6.0372

1.58

0.02

0.07

5.9258 1.86

10.791 10.728 0.51

18.127 18.127 0.00 17.932 1.07 18.121 0.03

106.08 106.38 0.28 101.42 4.40 106.02 0.06

127.27 127.27 0.00 119.54 6.07 126.76 0.40

129.38 129.49 126.22 2.44 129.19 0.150.08

0.25

0.01

151.52 151.90

299.12 299.14

152.23 0.05 151.60 0.05

-- -- 272.08 9.04

304.16 319.93 5.18 -- -- 300.57

604.31 602.88 0.24 -- -- --

606.90 606.21 0.11 -- -- --

1212.4

1214.0

1.18

corresponding FRF based on the OLS-identified reduced-order model. Fig-

ure 3.4b shows a comparison between an exact driving-point FRF and the cor-

responding FRF based on the TLS-identified reduced-order model. The mode-1

errors are due to the lack of data near the fundamental natural frequency.
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Figure 3.4: Frequency response functions for the 14-DOF simulated reduced-

order vibration test.
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3.2.3 Conclusions

The conclusions of this paper are:

• With simulated noise-free data, the SSID Algorithm exactly identified

the 18-DOF full-order model and also did an excellent job identifying a

14-DOF reduced-order model.

• From simulated noisy data, the algorithm still identified acceptable reduced-

order substructure system matrices. The TLS method proved to be better

than the OLS method for handling the noisy data.

3.3 Frequency-Domain Substructure System Identifi-

cation- (Ref. [3])

This paper, which is based on Ref. [1], first reviews the basic SSID theory

(Chapt. 2 above) and the least-squares solution methods (Sect. 3.2.1 above).

It then presents the step that is introduced into the SSID Algorithm to create

pseudo degrees of freedom. Finally, simulation results on the following topics

are presented: the relationship between model order and data bandwidth, the

effectiveness of various least-squares methods in handling noisy data, and the

use of pseudo degrees of freedom to expand the model order.

3.3.1 Model Order Determination; Pseudo Degrees of Freedom

Perhaps the most important, and most difficult, part of system identi-

fication is the determination of the proper model order. For structures with

a very high modal density, there are typically more modes in the frequency
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bandwidth than there are output sensors.For many system identification al-

gorithms, including the SSID Algorithm, this posesa seriousproblem.

In the SSID formulation given in Chapt. 2, the model order is limited

to the number of output sensors. This could be a serious drawback. For the

case when there are more modes present than sensors, the size of the model

must be expanded. An attempt to expand the size of the identification has

been developed using pseudo degrees of freedom. The additional degrees of

freedom are obtained by stacking the data used in Eq. 2.7 differently. The

input frequency spectrum is divided in half, into a low-frequency spectrum

and a high-frequency spectrum. In Eq. 2.9, the low-frequency response is then

stacked on top of the high-frequency response as shown:

jco J

... ._,,.,N.H"'fNI (CON,)

... (CON.)3_N, HaN= yNI

' na,.t',(CON,+,) "" '._+ _ " .7_N_,H'_'rN S(CON_,)

--"-!--1 H (CON.+,)
jtONe+l aNxfl

1

H,,,,,. (coN ,)

(3.4)

where Ne = g__ Stacking the data in this manner essentially doubles the order2 "

of the model.

Although the lower partition of data is measured at the same physical

coordinates as the upper partition of lower-frequency data, the system modes

that contribute to the two sets of data are not identical. The lower partition is

referred to as data from pseudo degrees of freedom. After Eq. 2.7 is solved using



26

the expanded model, the state-space eigenvalue problem, Eq. 2.12, is solved.

However, the details of the second step of the algorithm, the identification of

the system matrices (Eqs. 2.10 through 2.26), have yet to be resolved. Results

obtained by processing through the first step of the SSID algorithm emplo,ving

pseudo degrees of freedom are given below.

3.3.2 Numerical Simulation Results

The analytical model used in the simulations was the 52-DOF "payload

simulator" FEM. The FEM consists of 18 nodes and 20 beam elements and is

illustrated in Fig. 3.1. The payload simulator is supported by soft springs at

nodes 11, 13, 14, and 16 to simulate a bungee cord suspension system. The

three interface degrees of freedom for this structure are the Z-translational

degrees of freedom at nodes 4, 8, and 18. To include the effects of damping in

the system, modal damping at a level of 2% was added to all of the modes to

obtain a physical damping matrix for the fmite element model.

To generate the "experimental data" used in the simulations, the fre-

quency response functions were generated by solving Eq. 2.6 for A(wk), given

M, C, K, and F(wk) for the 52-DOF model. For the simulations presented

in this paper, active excitation was used at all of the interface degrees of free-

dom; that is, no reaction forces were included. The input forcing function at

each frequency wk consisted of three independent unit forces applied in the

Z-translational direction at nodes 4, 8, and 18 respectively.



27

Reduced-Order Models

The simulations presented here demonstrate the ability of the SSID algorithm

to predict the dynamic characteristics of a structure when only a limited num-

ber of output sensors is available. In a test environment, spatial truncation is

inevitable, since it is impossible to measure the response of all of the degrees of

freedom of a continuous structure. Three different reduced-order models were

used in the simulations (10-DOF, 12-DOF and 16-DOF), and the respective

DOFs were selected by using Kammer's Effective Independence method [15].

The modes of the resulting reduced-order models correspond to modes of the

original system that are dominated by Z-translations.

Data Bandwidth Effects

For each of the reduced-order models, three different input frequency ranges

were used to generate test data. This was done to determine how the SSID

algorithm handles residual information. The identified model depends on the

frequency range; for each model size, better results can be obtained by ad-

justing the frequency range until the best frequency range is found. In a test

environment, the "best" frequency range is unknown, so three input frequency

ranges were arbitrarily selected. The different frequency ranges are summarized

in Table 3.2.

Estimated undamped natural frequencies and estimated damping factors

were obtained for three different reduced-order models - 10-DOF, 12-DOF,

and 16-DOF. Drive-point FRFs at node 4 were obtained for each of the three

reduced-order models for the different input frequency ranges. Results are pre-

sented here only for the 12-DOF model. The estimated undamped natural
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No.

1

2

3

Table 3.2: Input Frequency Spectra

Min. Max. No. Freq.

Freq. (Hz) Freq. (Hz) Lines

1 300 512

1 650 512

1 2100 1024

Af

(Hz)

0.584

1.267

2.O50

frequencies and damping factors of the 12-DOF model for the different input

frequency ranges are listed in Tables 3.3 and 3.4. The corresponding FRFs are

shown in Figure 3.5. For the 12-DOF model, the best results are obtained for

the frequency ranges 1-300 Hz and 1-650 Hz. Note that the model correspond-

ing to the input frequency range of 1-300 Hz was able to correctly estimate

the system's response for modes 11 and 12 even though they axe above the 300

Hz upper limit of the FRF data. The synthesized FRFs for these two models

match very closely to those of the exact response, except near the response

of the 12th mode. Here, the model corresponding to the first frequency range

underestimates the response while the model corresponding to the 2nd input

frequency range overestimates the magnitude of the response.
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Table 3.3: Estimated Natural Frequencies -- 12-DOF Model vs Input Fre-

quency Spectrum

Exact

Freq.

(Hz)

1.1564

6.0642

10.783

18.127

109.49

127.14

137.82

156.87

297.66

304.47

606.45

631.08

Fmax=300 Hz

Freq. Percent

(Hz) Error
1.1564 1.465e-03

6.0642 3.454e-05

10.783 8.332e-06

18.127 1.780e-06

109.49 5.694e-04

127.14 1.377e-04

137.82 7.153e-05

156.86 8.364e-05

296.64 6.828e-03

304.58 3.859e-02

602.08 7.211e-01

614.86 2.570e+00

Fmax=650 Hz

Freq. Percent

(Hz) Error

1.1563 1.560e--02

6.0643 6.787e-04

10.783 2.530e-03

18.127 2.632e-03

109.49 2.860e-03

127.19 4.276e-02

137.82 7.165e-04

156.86 7.596e-03

296.99 2.239e-01

304.41 1.833e-02

605.93 8.683e-02

609.92 3.353e+00

Fmax=2100 Hz

Freq. Percent

(Hz) Error
1.1577 1.073e-O1

6.0620 3.767e-02

10.785 1.427e-O2

18.112 7.970e-02

109.54 4.366e-02

127.30 1.261e-01

137.83 5.248e-03

156.87 4.080e-03

299.29 5.461e-01

305.56 3.598e--01

616.79 1.704e+00

643.57 1.979e+00

Table 3.4: Estimated Damping Factors -- 12-DOF Model vs Input Freq. Spec-

trum (Exact Damp. Ratio = 0.02)

Fmax=300 Hz Fmax=650 Hz Fmax=2100 Hz

Damp. Percent Damp. Percent Damp. Percent
Ratio Error Ratio Error Ratio Error

0.02000 9.909e-03 0.02006 2.965e-01 0.01782 1.088e+01

0.02000 2.023e-03 0.01995 2.550e-01 0.01854 7.309e+00

0.02000 4.948e-03 0.02025 1.257e+00 0.01558 2.209e+01

0.02000 9.197e-04 0.01936 3.193e+00 0.01929 3.524e+00

0.02000 1.234e-02 0.02003 1.563e-01 0.01985 7.721e-01

0.02000 6.847e-03 0.02012 6.068e-01 0.01855 7.255e+00

0.02000 1.396e-03 0.01999 4.555e-02 0.01982 8.789e-01

0.02000 5.182e-03 0.02000 4.095e-03 0.02000 5.835e-03

0.01999 7.062e-02 0.01982 8.829e-01 0.03171 5.855e+01

0.02004 2.125e-01 0.01989 5.649e-01 0.02753 3.764e+01

0.02003 1.565e-01 0.01979 1.029e+00 0.01807 9.641e+00

0.02003 1.735e-01 0.02774 3.869e+01 0.02286 1.432e+01
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Effect of Noise

Noise was added to the data to represent the errors inherent with actual test

data, such as transducer error, signal processing and conditioning error, or other

errors and uncertainties present in the measurement process. The noise added

to the simulated FRF data was uniformly distributed, pure random, and zero

mean. A noise level of 2% was used in the simulations in this study. The noise

level is the percent of the root-mean-square (RMS) value of the random noise

to the RMS value of the noise-free signal. Acceleration is usually measured as

the output of the structure, so the magnitude of the noise is proportional to

the magnitude of each accelerance FRF spectrum, not the receptance frequency

response. A random phase error was also introduced; the maximum error on

the phase was 2 ° . To reduce the effect of the noise, signal averaging was used,

just as averaging would be employed in an actual test. The measured FRFs

were averaged over 40 samples.

The three least-squares methods discussed in Ref. [1] - ordinary least

squares (OLS), total least squares (TLS), and scaled total least squares (STLS)

- were used to solve the over-determined system of equations, Eq. 2.7. No

acceptable solution for any of the reduced-order models was ever obtained using

the OLS method. The resulting identified system matrices were not positive

definite, and typically yielded complex estimates for the undamped natural

frequencies. Increasing the number of averages did not significantly improve

the resulting solution. Thus, for implementation of the SSID algorithm in test

environments, a TLS solver will be necessary.

Comparisons of the results for the 12-DOF model are shown in Fig. 3.6
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and in Tables 3.5 and 3.6. The STLS method providesa slightly better esti-

mation of the dynamic characteristicsof the original structure than the TLS

solution for the low-frequencyresponse. Both solutions overestimatethe re-

sponseof the structure for frequenciesgreater than the input frequencyrange

of 1-650 Hz.

104 , • •

10 3

"1-

10 2

101

10 0

10 "1

I .__.__Exact

No Noise
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STLS

10 0 101 10 2 10 3

Frequency (Hz)

Figure 3.6: Comparison of FRFs of 12-DOF Model vs Solution Method
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Table 3.5: Estimated Natural Frequencies-- 12-DOF Model vs Solution
Method

Exact NoiseFree TLS STLS
Freq. Freq. Percent Freq. Percent Freq. Percent
(Hz) (Hz) Error (Hz) Error (Hz) Error

1.1564 1.1563 1.560e-02 1.2983 1.226e+01 1.1701 1.182e+00

6.0642 6.0643 6.787e-04 6.0660 2.812e-02 605.85 9.405e-02

10.783 10.783 2.530e-03 10.957 1.605e+00 10.830 4.323e-01

18.127 18.127 2.632e-03 18.761 3.500e+00 18.221 5.221e-01

109.49 109.49 2.860e-03 109.43 5.631e-02 109.46 2.827e-02

127.14 127.19 4.276e-02 127.61 3.710e-01 127.49 2.772e-01

137.82 137.82 7.165e-04 137.70 8.719e-02 137.73 6.834e-02

156.87 156.86 7.596e-03 156.66 1.359e-01 156.71 1.057e-01

297.66 296.99 2.239e-01 291.23 2.160e+00 295.51 7.223e-01

304.47 304.41 1.833e-02 304.49 6.377e-03 304.96 1.610e-01

606.45 605.93 8.683e--02 600.29 1.016e+00 603.69 4.558e-01

631.08 609.92 3.353e+00 653.34 3.528e+00 654.15 3.656e+00

Table 3.6: Estimated Damping Factors -- 12-DOF Model vs Solution

Method (Exact Damp. Ratio = 0.02)

Noise Free TLS STLS

Damp.

Ratio

0.02006

0.01995

0.02025

0.01936

0.02003

0.02012

0.01999

0.02000

0.01982

0.01989

0.01979

0.02774

Percent

Error

2.965e--01

2.550e-01

1.257e+00

3.193e+00

1.563e-01

6.068e--01

4.555e-02

4.095e-03

8.829e-01

5.649e-01

1.029e+00

3.869e+01

Damp.

Ratio

0.01737

0.01975

0.02139

0.01758

0.02158

0.01935

0.02171

0.02102

0.02975

0.02251

0.02351

0.06257

Percent

Error

1.312e+01

1.225e+00

6.977e+00

1.2lie+01

7.932e+00

3.234e+00

8.545e+00

5.094e+00

4.876e+01

1.254e+01

1.754e+01

2.128e+02

Damp.

Ratio

0.02002

0.01989

0.02225

0.01717

0.02105

0.01856

0.02154

0.02089

0.02880

0.02257

0.01557

0.06822

Percent

Error

9.185e-02

5.410e-01

1.127e+01

1.413e+01

5.268e+00

7.178e+00

7.699e+00

4.474e+00

4.400e+01

1.285e+01

2.215e+01

2.411e+02
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Pseudo Degrees of Freedom

This section presents the results of augmenting the model order using pseudo

degrees of freedom (PDF). For this simulation, the 10-DOF model was used

and the the input frequency range was 1-2100 Hz with 1024 equally spaced

frequency lines. Using the pseudo degrees of freedom, the model order was

expanded to create a 20-DOF pseudo-degree-of-freedom model, and the identi-

fication process through Eq. 2.12 was completed; the remaining portion of the

identification procedure has yet to be defined for pseudo degrees of freedom.

No noise was added to the data. Table 3.7 gives a listing of the estimated

frequencies from the solution of Eq. 2.12 and compares those to the frequencies

obtained using only the original ten degrees of freedom.

Table 3.7: Identified Natural Frequencies Using Pseudo Degrees of Freedom

Pseudo DOF Model Original Model

Mode Freq. Mode

No. (Hz) No.

1 1.1026 11

2 6.0572 12

3 10.387 13

4 18.063 14

5 109.50 15

6 128.19 16

7 137.82 17

8 156.89 18

9 271.10 19

10 297.17 20

Freq.

(Hz)

304.24

463.91

497.10

1189.8

1193.2

1675.1

1686.4

1713.0

2029.5

2031.6

Mode Freq.

No. (Hz)

1 1.1454

2 6.0878

3 10.989

4 18.293

5 109.52

6 127.75

7 137.81

8 156.99

9 308.15

10 311.36

Using the original 10 degrees of freedom, only the lowest 10 modes could

be identified even though more are present in the data. When the order of
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the model wasexpandedby useof pseudodegreesof freedom, the model was

able to identify 4 additional target modes, modes 21. 22, 29, and 30. plus

some additional computational modes. Some sort of modal quality indicator

is needed to distinguish between the physical and computational modes of the

PDF model. This approach doubles the model order. In some instances, this

may be too large and the model order may need to be decreased from twice

the original size. A reduction step would then be required to determine the

appropriate model order. The initial results are encouraging, since some of the

higher frequencies can be identified using the pseudo degrees of freedom.

3.3.3 Conclusions

The conclusions reached in this paper are:

Accurate reduced-order models can be identified by use of the SSID Al-

gorithm with the total least-squares method used to solve the overdeter-

mined systems of linear equations.

Pseudo degrees of freedom can be introduced to expand the number of

degrees of freedom of the model beyond the number of output sensors for

which measured response data is available. However, further research is

needed on this topic.

3.4 A Craig-Bampton Test-Analysis Model- (Ref. [4])

To verify that a finite element model (FEM) of a structure is sufficiently

accurate to predict the structure's response, the FEM must be test validated.
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The accuracyof the FEM is often assessedby comparingthe modal parameters

of the analytical model to thoseextracted usingvibration test data. Test and

analysis natural frequenciescan be compareddirectly. However, the modal

vectorscannot be readily comparedsincethe FEM will havemanymore DOFs

than the test configuration will haveaccelerometers.In order to comparethe

FEM results with the test results, a reduced-orderrepresentationof the FEM

called a test-analysis model (TAM) is usually created. This leads to a one-to-

one relationship between the TAM DOFs and the number of accelerometers

in the test configuration. Numerous procedures for generating reduced-order

models have been developed. The simplest and most straightforward reduction

procedure is the Guyan, or static, reduction method [16]. This method is very

useful for generating test-analysis models since the measured DOFs can be

selected as the ones to be retained in the reduction process. However, the

Guyan reduction method is quite sensitive to the selection of omitted DOFs

and often results in poor accuracy if there is inertia associated with the omitted

degrees of freedom.

References [1] and [17] describe an extension of the Craig-Bampton com-

ponent mode synthesis method that can be used to create a TAM for modal

survey test-mlalysis correlation. In the original Craig-Bampton formulation,

the model coordinates are a combination of physical coordinates and general-

ized coordinates. In the proposed test-analysis model (TAM), the accuracy of

the original Craig-Bampton formulation is retained, but the TAM is referred

to the test physical coordinates only. A systematic procedure is presented to

identify the fixed-interface normal modes that contribute most to the retained

physical DOFs. This method is particularly useful when the target modes
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are not the lowest consecutivemodesof the system. The performanceof the

proposedmethod is comparedto the performanceof two other popular model-

reduction techniques.

3.4.1 Craig-Bampton Models in Generalized Coordinates

The N physical degrees of freedom of the substructure are first parti-

tioned into two sets - the boundary, or interface, DOFs and the interior DOFs:

x = (3.5)
Xb

where Xb are the boundary degrees of freedom and x, are the interior degrees

of freedom 2. With damping omitted, the equations of motion are

Mb, Mbb Xb + Kbi Kbb Xb fb

The Craig-Bampton method uses the Ritz transformation

x = Tcslq (3.7)

where

• _ = -K[,'K_b (3.9)

and q is a vector of generalized coordinates having the form

q' } (3.10)q = Xb

2Although originally developed as a component mode synthesis method, the method can

be considered to be a general model-reduction method by simply letting i ---* o and b --_

a. That is, let "interior" coordinates be more general "omitted" DOFs and, likewise, let
"boundary" coordinates be more general "active" coordinates.
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The first column-partition of the Craig-Bampton transformation matrix

contains the fixed-interface normal modes. This describes the motion of the

interior DOFs relative to the boundary DOFs in terms of the normal modes

of the substructure with the boundary DOFs fixed. The fixed-interface normal

modes are obtained by solving the eigenproblem for the interior DOFs

(K,, - _M,,)¢,. = O (3.11)

or

K_¢n = M_<I),,An (3.12)

where the subscript r denotes the rth fixed-interface normal mode. The second

column-partition of the transformation matrix contains the constraint modes.

The rth constraint mode is defined by producing a unit displacement at the

rth boundary degree of freedom with all other boundary DOFs constrained

and with all interior DOFs unconstrained.

The final reduced-order matrices obtained are based on a combination

of physical (boundary) coordinates and generalized modal coordinates. These

generalized coordinates cannot be used directly for test-analysis correlation and

therefore must be transformed into suitable physical coordinates.

3.4.2 Craig-Bampton Models in Physical Coordinates

The transformation from generalized coordinates to physical coordinates

for Craig-Bampton models is described by Huang and Craig [17]. The interior

physical DOFs are paxtitioned via

"{x_}={ x"}xo (3.13)
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where x_ are the retained DOFs where measurements will be made during the

vibration test, and Xo are the omitted DOFs. The equations of motion can be

rewritten as

&o +

M_M_oM_b
Mo_ Moo Mot,

M_ Mt,o M_

K_ K_o K_b
K_ K_ h%
K_ K_ K_

{xr}Xo = .to (3.14)

xb fb

Then, Eq. 3.7 can be written as

{x/Xo = TcBlq = e#o e;o q'

Xb 0 I Xb

(3.15

This leads to the transformation matrix TCB_ relating the generalized coordi-

nares to physical coordinates to be used during the test:

- ,) _
TCB2= (¢P.,._.,) _I,._ (4p.,

0 (3.16)

A similar approach was developed by Kammer [18], but Huang and Craig point

out that the contribution of the constraint modes to the transformation matrix

TeBs was not included in Kammer's formulation of the transformation.

The order of the Craig-Bampton model is determined by how many fixed-

interface normal modes are used to augment the constraint modes when forming

the transformation matrices. If the desired size of the reduced-order model is

k, then the number of fixed-interface normal modes retained is n_ = k -nb.

Typically, only the lowest nm fixed-interface normal modes are kept. This

results in a Craig-Bampton model that accurately predicts the lowest k modes

of the substructure. However, if the target modes are not the lowest consecutive

modes, then the analytical modes from the Craig-Bampton model will not

necessarily correlate well with the target test modes.
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3.4.3 Selection of Component Modes

In order for the Craig-Bampton mode] to representthe target modes,a

proper set of fixed-interfacenormal modesmust be selected.This set consists

of the fixed-interfacenormal modesthat contribute most to the target modes.

The selectionprocessis accomplishedin the samemanner that wasusedin Ref.

[19] to determine which coordinatesto selectas the rigid-body coordinatesto

solvea semidefiniteeigenvalueproblem. Ganssianelimination or other factor-

ization methods can be performed on qbnrwith pivot selectionbeing used to

determinewhich columnsof ¢n_contribute most to the target modes.Full col-

unto and row pivoting is necessaryin the event that oneof the retained interior

DOFs lies alonga node line of a fixed-interfacenormal mode. It wasobserved,

however, that this selection techniquewasdependentupon the scalingof the

fixed-interfacenormal modes,sofurther study is neededto removethe scaling

dependence.

A Craig-Bampton test-analysismodel suitable for correlation with the

test modescanbeobtained by choosingthe fixed-interfacenormal modesthat

contribute most to the test modes. The final form of the transformations

defining the Craig-Bampton TAM are givenby

MCB T T= T_B2T_B, MTcB_TcB 2 (3.17)

KCB T T= T_s2T_s , KTcs, TcB2 (3.18)

feB TT ,-r,T r (3.19)---- C B2 .LC B1,1

where the transformation matrices contain the proper set of fixed-interface

normal modes.
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3.4.4 Simulation Results

The analytical model usedin the simulations is a 52-DOF FEM of the

"PayloadSimulator" in the Structural DynamicsLaboratory at The University

of Texasat Austin. The physicalstructure consists of two 60-in.-long aluminum

box beams connected by two 20-in. cross-beams at either end. The FEM

consists of 18 nodes and 20 beam elements and is illustrated in Fig. 3.1.

The physical structure undergoes motion primarily in the Z direction, so

all of the X and Y translations and Z rotations are constrained in the finite

element model. The payload simulator is supported by soft springs at nodes

11, 13, 14, and 16 to simulate a bungee cord suspension system. The modes of

interest for this structure are the 3 rigid-body modes (modes 1-3), the funda-

mental torsion mode (mode 4), and the primary bending modes (modes 5-10,

17, 18, 21, 22, 29, and 30). These are the modes that are dominated by transla-

tional motion in the Z-direction. Note that the target modes are not the lowest

consecutive modes of the structure, but are distributed throughout the modal

spectrum.

The Craig-Bampton reduced-order model in physical coordinates is com-

pared to two other TAM models, the Guyan model and the Improved Reduc-

tion System (IRS) model. The appropriate fixed-interface normal modes for

use in the Craig-Bampton models were selected using the technique described

in Sect. 3.4.3. The estimated natural frequencies and the predicted dynamic

response are compared for 16-DOF reduced-order models based on the three

TAMs. Cross-orthogonality checks were also performed for each TAM.
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Table 3.8: Estimated Natural Frequencies-- 16-DOFTAMs

SSID Guyan IRS C-B

Freq. Percent Freq. Percent Freq. Percent Freq. Percent

(Hz) Error (Hz) Error (Hz) Error (Hz) Error

1.1507 4.948e-O 1 1.1564 1.864e-06 1.1564 3.904e-4)8 1.1564 1.242e-07

6.0628 2.430e-02 6.0643 7.634e-05 6.0642 1.108e-09 6.0642 5.057e-06

10.807 2.165e-01 10.783 3.467e-01 10.783 7.736e-10 10.783 2.255e-04

18.115 6.439e-02 18.127 2.036e-03 18,127 1.557e-09 18.127 1.569e-03

109.49 1.539e-03 109.50 8.567e-03 109.49 5.435e-06 109.49 1.934e-O3

127.15 7.669e-03 127.27 1.026e-01 127.14 1.943e-04 127.27 1.006e-01

137.82 2.866e-O3 137.83 7.427e-03 137.82 6.314e-07 137.83 3.774e-03

156.86 5.341e-4)3 156.91 2.329e-02 156.87 2.836e-05 156.88 5.222e-03

297.61 1.796e-02 299.12 4.909e-01 297.75 3.140e-02 299.38 5.779e-01

304.41 1.745e-02 304.53 2.095e-02 304.47 6.180e-06 304.51 1.448e-4)2

606.24 3.595e--02 604.31 3.535e-01 595.50 1.807e+00 606.61 2.544e-02

626.89 6.648e-01 607.01 3.814e+00 606.43 3.906e+00 617.20 2.200e+00

1189.4 8.538e-02 1212.4 1.848e+00 1133.1 4.816e+00 1189.5 7.938e-02

1192.3 8.922e-02 1214.1 1.738e+00 1190.8 2.093e-4)1 1191.1 1.911e-01

2017.0 5.990e-O1 2227.5 9.774e+00 1752.9 1.361e+01 2029.3 7.551e-03

2017.6 6.686e-01 2228.7 9.721e+00 2052.1 1.026e+00 2035.0 1.865e-01

Table 3.8 lists the estimated undamped natural frequencies for each of

the reduced-order models. As expected, the Craig-Bampton and IRS mod-

els provide better estimations of the undamped natural frequencies than does

the Guyan model. Overall, the frequencies are estimated best by the Craig-

Bampton model. The table also shows the estimated undamped natural fre-

quencies for a reduced-order model obtained by applying the SSID substructure

system identification method with simulated FRFs for the 52-DOF FEM.

A comparison of the estimated FRFs for each of the 16-DOF reduced-

order models is given in Fig. 3.7. The physical damping matrix used for each

of the TAMs was computed by using the real normal modes estimated by each

model, specifying a modal damping factor of 2% in each mode, and computing

a modal damping matrix. As shown in Fig. 3.7, all three methods represent
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the dynamic responseof the original 52-DOF model very well.

3.4.5 Conclusions

The conclusions reached in this paper are:

@ Although the Craig-Bampton model-reduction method was not originally

developed for use as a test-analysis model reduction method, the results

presented in this paper show that it can be used as such. A reduced-order

model can be generated that has the accuracy of the Craig-Bampton

method and also has the convenience of having all of the degrees of free-

dom in physical coordinates, making it suitable for correlation with test

data.

• The process described in this paper for selecting the appropriate fixed-

interface normal modes seems to be dependent upon the scaling of the

modes. Further research is needed to determine an absolute measure that

can be used to determine the fixed-interface normal modes that contribute

most to the target modes.

3.5 A Band-Processing Algorithm for Structural Sys-

tem Identification- (Ref. [5])

This paper, which is based on Sects. 5.2 and 6.3 of Ref. [1], presents a

band-processing algorithm for frequency-domain structural system identifica-

tion. It describes a systematic procedure for using frequency response functions

that are processed in overlapping frequency bands and then combined to create
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a globalsystemmodelof the test structure. A linear, viscous-damped,reduced-

order systemmodel (M,C, andK) is obtained. Numerical simulations illustrate

the algorithm's ability to identify valid reduced-order structural models. The

proposed algorithm promises to be a suitable candidate for implementation on

parallel-processing computers.

Following a review of the basic SSID Algorithm, the revisions added to

the basic algorithm to permit data to be processed in a sequence of overlapping

frequency bands is presented. A flow chart of the expanded algorithm is given,

and a simulation study is then presented in which the expanded algorithm is

used to reduce the 52-DOF "payload simulator" FEM to a 16-DOF reduced-

order model.

3.5.1 A Narrow-Band FRF Data-Processing Algorithm

Previous authors (e.g., Ref. [20]) have noted that frequency-domain iden-

tification algorithms generally result in better estimations when used as narrow-

band identification procedures. However, sometimes not all of the target modes

lie within a narrow frequency band. For instance, the target modes may span

a frequency range of 2 kHz or more. Terms in the resulting frequency-domain

equations of motion would vary by a minimum of eight orders in magnitude,

and this could lead to the data being ill-conditioned. In the SSID algorithm,

the first estimation step, (i.e., the solution of Eq. 2.7) is more prone to ill-

conditioning than is the second step (i.e., the solution of Eq. 2.23), since the

former step uses accelerance, mobility, and receptance frequency response func-

tions.
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In the basic formulation of the SSID algorithm (Chapt. 2) all of the

measured data is to be processed simultaneously. As just pointed out, this

could lead to numerical difficulties. To alleviate this problem, a concept referred

to as band processing is introduced in this paper. The basic idea behind band

processing is to work with narrow bands of frequency data individually, and

thus avoid some of the conditioning problems. In this manner, experimental

data spanning several decades can be processed incrementally, for example, 500

Hz at a time, by the SSID algorithm until all of the data has been included in

the identified model.

The band processing is implemented in the SSID algorithm as follows.

First, the experimental data is acquired in the usual manner covering as many

decades as necessary to obtain all of the desired modes. The data is then

divided into suitable bandwidths of overlapping frequency bands. Then the

SSID algorithm is used to process each frequency band individually through the

solution of the state-space eigenvalue problem, Eq. 2.12. From each complex-

conjugate pair of eigenvallms, a natural frequency and damping factor can be

computed:

_r - i_] r = 1,...,Nx (3.20)

_ - r = 1,...,Nx (3.21)

This step is repeated until all of the frequency bands have been processed.

The next step is to separate the structural roots from the computational

roots, or "noise roots." In this study, four criteria were used to distinguish

between the physical modes and computational modes.
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. To graphically aid in the selection process, the estimated natural frequen-

cies and the frequency bands are plotted versus frequency over the entire

frequency range. Any estimated frequencies 1,_ing outside of the given

frequency band are discarded.

2. Roots with negative damping values are discarded.

3. The modal phase collinearity (MPC) is computed for each complex-conjugate

pair of mode shapes. 6 Those modes with less than a specified MPC value

are discarded. The value is dependent upon the level of noise in the

measurement signal and the quality of the data.

4. If the root is not repeated in another frequency band, it is discarded.

Thus, the need for the overlapping frequency bands. True structural

roots will be estimated in multiple frequency bands, while computational

ones are highly unlikely to be repeated in multiple frequency bands.

The flow chart in Fig. 3.8, which summarizes the steps in this band-processing

procedure, is also provided in Refs. [1] and [5].

Once the computational roots are eliminated and the physical roots

stored, the SSID algorithm can proceed to identify the system matrices just as

before 3. Any one of a set of repeated roots and corresponding eigenvectors can

be arbitrarily selected from any frequency band for use in the second part of

3Previous works, e.g., Ref. [20], have carried out narrow-band frequency-domain identifi-
cation of frequencies, damping factors, and mode shapes using the steps up to this point in
the present algorithm. The remaining steps of the present band-processing algorithm have
apparently not been considered by previous authors.
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the SSID algorithm since the eigenvectors are arbitrarily scaled. The scaling

used to determine the final system matrices arises from the solution for the

coefficients in Eq. 2.23.

In the band-processing simulations included in this paper, three differ-

ent approaches where used to estimate the gr values. The first was to solve

Eq. 2.23 and estimate the g coefficients using all of the FRF data in the par-

ticular frequency band from which the root was selected. This approach is

referred to as BP1. The second approach is similar to the first, except that

only data near each particular resonance frequency is used in the estimation

of the corresponding cir value. This approach is referred to as BP2. The third

approach is to use the data obtained near the resonances of all of the selected

roots simultaneously in Eq. 2.23; this is referred to as BP3. The first two ap-

proaches provide local estimations, while the last is a global one since data from

multiple frequency bands is used simultaneously.

3.5.2 Simulation Results

This section presents the results of simulations where the band-processing

approach described in the previous section was used in the identification pro-

cedure. Development of the band-processing approach was motivated by the

unsuccessful identification of a particular 16-DOF model from noisy data. First,

the band-processing method was applied to the 16-DOF model using noise-free

data to determine if the idea would yield valid results. Then, simulated data

containing noise was used.

Simulated FRF data for a 16-DOF model, with 1024 equally spaced fre-



5O

quencylines over an input frequency spectrum of 1-2100 Hz, was used to test

the proposed band-processing algorithm. To illustrate the procedure outlined

in the previous section, the FRF data was divided into 100-Hz frequency bands

with 50-Hz overlap, resulting in 41 frequency bands. For each frequency band,

identified by the dark horizontal lines in Fig. 3.9, the SSID identification pro-

ceeded through the solution of Eq. 2.12. The estimated natural frequencies

computed using Eq. 3.21 are plotted as x's in Fig. 3.9. The vertical lines

indicate the target-mode frequencies. Note that even though each frequency

band spans only 100 Hz, numerous target frequencies outside of a given band

are also correctly identified. This only occurs when noise-free data is used. In

addition, a number of "noise modes" are also identified. Following the band-

processing flow chart, the roots in bands 1, 3, 6, 13, 24, and 40 were selected

as the identified structural-mode parameters, and the remaining steps of the

SSID algorithm were then carried out to identify the system matrices.

The three different approaches described in Section 3.5.1 for solving

Eq. 2.23 were used to solve for the scale factors &. These approaches are re-

ferred to as BP1, BP2, and BP3 respectively. The BP1 estimates did not yield

positive definite system matrices and are not included here. The results from

the other two methods are shown in Tables 3.9 and 3.10 and in Fig. 3.10. The

BP2 estimate provides the best estimation of the natural frequencies. How-

ever, the BP2 results tend to overestimate the response at high frequencies,

while the response of BP3 is much closer to the one obtained using the original

SSID formulation. The estimates of the damping factors are the same for both

band-processing estimations, since the damping factors are computed from the

same identified modal parameters. The difference between BP2 and BP3 is
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in the data used in Eq. 2.23 for the estimation of the &,-coefficients. The

band-processingmethod estimatesthe damping factors very well.

A noiselevelof 2%of the RMS valueof the acceleranceFRF wasapplied

to each FRF. In addition, a random phaseerror was also included, with a

maximum error of 2°. Resultsof the band-processingsimulations using noisy

data arepresentedin Table 3.11and in Figs. 3.11 to 3.13. Notice in Fig. 3.11

that, whennoise is applied to the signal, the algorithm tries to fit the data to

the correspondingfrequencyband, and most of the roots areestimated to lie

near the centerof the frequencyband. To aid in distinguishing these "noise

modes,"or "computational modes,"an MPC criterion of 0.95wasused.
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Table 3.9: Estimated Natural Frequencies-- 16-DOF Noise-FreeModels

Exact SSID BP2 BP3
Freq. Freq. Percent Freq. Percent Freq. Percent
(Hz) (Hz) Error (Hz) Error (Hz) Error

1.1564 1.1507 4.948e-01 1.1564 2.972e-05 1.1564 1.826e-05

6.0642 6.0628 2.430e-02 6.0642 2.348e-04 6.0642 8.340e-04

10.783 10.807 2.165e-01 10.783 1.096e-04 10.783 6.707e-06

18.127 18.115 6.439e-02 18.127 9.541e-05 18.126 1.658e-03

109.49 109.49 1.539e-03 109.49 3.223e-03 109.49 8.542e-04

127.14 127.15 7.669e-03 127.14 2.056e-03 127.14 1.502e-O3

137.82 137.82 2.866e-03 137.81 6.636e-03 137.81 9.261e-03

156.87 156.86 5.341e-03 156.87 1.868e-03 156.87 4.088e-04

297.66 297.61 1.796e-02 297.26 1.345e-01 297.56 3.264e-02

304.47 304.41 1.745e-02 304.01 1.495e--01 304.50 1.125e-02

606.45 606.24 3.595e-02 605.12 2.202e-01 606.46 1.323e-03

631.08 626.89 6.648e-01 630.17 1.450e-01 629.75 2.110e-01

1190.4 1189.4 8.538e-01 1188.9 1.306e-01 1195.1 3.959e-01

1193.3 1192.3 8.922e-02 1191.1 1.872e-01 1196.4 2.525e-01

2029.1 2017.0 5.990e-01 2029.0 8.002e-03 2144.5 5.683e+00

2031.2 2017.6 6.686e-01 2031.8 2.758e-02 2171.2 6.893e+00
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Table 3.10: Estimated Damping Factors -- 16-DOF Noise-Free Models

Exact SSID BP

Damp. Damp. Percent Damp. Percent

Ratio Ratio Error Ratio Error

0.02 0.01980 1.022e+00 0.02000 2.688e--08

0.02 0.02104 5.179e+00 0.02000 1.833e--06

0.02 0.01824 8.789e+00 0.02000 4.289e--09

0.02 0.02055 2.754e÷00 0.02000 1.311e-09

0.02 0.02009 4.696e-01 0.02000 4.131e-06

0.02 0.01882 5.911e+00 0.02000 2.508e-08

0.02 0.01993 3.678e--01 0.02000 7.951e-08

0.02 0.01993 3.481e--01 0.02000 1.177e--07

0.02 0.02157 7.847e+00 0.02000 3.463e--06

0.02 0.01980 9.997e--01 0.02000 4.913e--08

0.02 0.02018 8.870e--01 0.02000 1.115e--05

0.02 0.02593 2.964e÷01 0.02000 2.233e-02

0.02 0.02031 1.552e+00 0.02000 1.140e--03

0.02 0.01923 3.830e+00 0.02000 3.208e-05

0.02 0.01549 2.257e+01 0.02000 1.718e--03

0.02 0.01571 2.145e+01 0.02000 2.260e-03
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Table 3.11: Estimated Modal Parameters-- 16-DOF ModelsEmploying Band
Processingwith Noisy Data

Exact BP2 BP3 Exact

Freq. Freq. Percent Freq. Percent Damp.

(Hz) (Hz) Error (Hz) Error Ratio
1.1564 1.1435 1.116e+00 1.4273 2.342e+01 0.02

6.0642 6.0579 1.054e-01 6.1922 2.110e+00 0.02

10.783 10.784 6.916e-03 12.538 1.629e+01 0.02

18.127 18.132 2.896e-O2 19.005 4.846e+00 0.02

109.49 109.51 1.700e-02 109.51 1.989e-02 0.02

127.14 127.24 7.661e--02 127.39 2.013e--01 0.02

137.82 137.82 4.082e--04 137.80 1.642e-02 0.02

156.87 156.85 1.089e--02 156.87 9.918e--04 0.02

297.66 297.68 5.516e-03 297.92 8.773e-02 0.02

304.47 304.39 2.448e-02 304.04 1.415e--01 0.02

606.45 606.72 4.421e--02 606.75 4.916e--02 0.02

631.08 630.93 2.382e-02 631.76 1.073e-01 0.02

1190.4 1191.1 5.449e--02 1186.1 3.625e--01 0.02

1193.3 1193.1 2.350e--02 1192.0 1.11Be-01 0.02

2029.1 2015.9 6.522e-01 2015.5 6.693e--01 0.02

2031.2 2031.8 2.709e--02 2054.4 1.141e+00 0.02

BP

Damp. Percent
Ratio Error

0.00764 6.178e÷01

0.02016 7.789e-01

0.02046 2.296e+00

0.02143 7.152e+00

0.01880 5.985e+00

0.01977 1.168e+00

0.02009 4.474e-01

0.01996 1.836e-01

0.01987 6.248e--01

0.01975 1.239e+00

0.02058 2.911e+00

0.01957 2.145e+00

0.02004 1.824e-01

0.02000 1.637e-02

0.01864 6.796e+00

0.01896 5.213e+00
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In Fig. 3.13, the BP2 approachestimatesthe FRF very well at low fre-

quencies,while overestimatingthe responseat higher frequencies,and it:misses

the 109Hz mode. The converseis true for the BP3 approach;it underestimates

the responseat low frequencieswhile representingthe responseat high fre-

quenciesfairly well. The methodslabeled BP2 and BP3 areonly two possible

approachesto processingthe data; further researchon this topic is needed.
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Thesesimulation results indicate that the modal parameters, Eq. 2.23,

can be estimated band by band and then usedfor the final estimation of the

system matrices. This is very encouraging, since no acceptable result was

previously obtained using the original formulation of the SSID algorithm with

this samenoisy data. The band-processingapproach wasalso applied to 12-

DOF and 10-DOFreduced-ordermodelswith resultssimilar to thosepresented

herefor the 16-DOFmodel. For further details, pleaseseeRef. [1].

3.5.3 Conclusions

The following conclusions were reached:

An algorithm that can potentially extend the range of usefulness of frequency-

domain system identification has been proposed. The first stage of the

algorithm employs processing of FRF data from a number of frequency

bands of relatively limited bandwidth. It results in a collection of complex

structural modes. The second stage of the algorithm then combines all of

the complex structural modes into a single linear reduced-order system

model (M, C, K).

• Band processing holds the potential of significant computational savings.

Since the computations are done band by band with a much smaller

amount of data, the frequency bands could be processed simultaneously

on a parallel-processing computer. For tests where a large number of

frequency lines are obtained, this could prove to be very cost effective.



Chapter 4

CONCLUSIONS AND RECOMMENDATIONS

Based on the research conducted under NASA Grant NAG8-1130 and

summarized in this Final Report, the following conclusions may be drawn:

• The SSID Algorithm can successfully identify reduced-order mass, damp-

ing, and stiffness matrices of a substructure from noisy FRFs based on

input-force data at all interface DOFs and acceleration data taken at all

substructure DOFs.

• Except for the case of noise-free simulations, it is necessary to use the total

least-squares method or the scaled total least-squares method for solving

the overdetermined systems of linear equations; the ordinary least-squares

method is not adequate.

• If there are more modes in the frequency bandwidth being considered than

there are (acceleration) output sensor DOFs, it appears to be possible to

employ pseudo degrees of freedom to expand the order of the model.

• If it is desired that the reduced-order model be valid over several decades

of frequency, and if the number of (acceleration) output sensor DOFs

is large enough to model the modes present in the data, then a band-

processing procedure may be employed to identify a model that is valid

over the entire bandwidth of the data.

61
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• By adding a secondcoordinate transformation to the classical Craig-

Bampton CMS modal transformation, a test-analysismodel (TAM) can

be created that is consistentwith the original Craig-Bamptonmodel.

During the courseof researchon the presentgrant, an attempt wasmade

to usethe SSID Algorithm to identify a modelof the physical "PayloadSimula-

tor" in the Structural DynamicsLaboratory. That wasnot successful,probably

becausethe measureddata that wasavailablewasnot taken overan appropri-

ate bandwidth for the number of accelerometersthat were used. Becauseof

the amount of time that was required to get the SSID Algorithm to the state

indicated by the conclusionsstated above,it wasnot possibleto completethis

work on identifying a physical substructureor to developa test/analysis plan

for a completetest/identification programon a full-scalestructure. ThoseTask

2 items are currently under investigation.

For the further developmentof the SSID algorithm, the following tasks

are recommended:

• Develop a computer program for applying the SSID algorithm to full-

scaleSpaceShuttle payloads.This will include further refinementof the

useof least-squaressolversand band processing.

• Apply the SSIDalgorithm to identify math modelsof representativephys-

ical structures, starting with the "Payload Simulator" in the Structural

Dynamics Laboratory at UT-Austin.

• Assessvarious methods for measuring dynamic reactions and develop

designcriteria for reaction-measurementsystems.
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Appendix A

SSID EXAMPLE

This appendix provides an example case from Chapter 6 of CAR 96-

211], a report entitled, A Frequency-Domain Substructure System Identification

Algorithm.

A.1 Example Case from CAR 96-2

For this example, the MATLAB algorithm ebr4.m was run for a 16-DOF

damped model with no noise and with a 300 Hz frequency spectrum. The

following checklist details the inputs needed to set up this example.

• No Noise: To remove the noise input to the algorithm, set magnoise =

0, phnoise = 0, and nsample = 1. Additionally, comment out the call to

the function applynoise and uncomment the line under it, "Abn = AB;

Pn = P."

• 16 DOF: To apply the algorithm to a 16 DOF model, comment out all of

the "modes =" lines except the line, "modes = [1:10,17,18,21,22,29,30]";

• 300 Hz: To test the system over a 300 Hz frequency spectrum with 512

frequency lines, set ne = 512 and fmax = 300.

These inputs are all that is required to run the example mentioned above.

The following pages present the algorithm used for this example, set up as
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presentedin the list above,aswell asanoutput diary from the executionof the

a/gorithm. Note that the numbers in the output diary match thosepresented

in Tables. 6.8 and 6.9 in CAR 96-2.

A.2 MATLAB Program ebr4.m for 16 DOF, No Noise,
300 Hz

This MATLAB program was developed by Eric Blades in the course of

his research for the M.S. degree at The University of Texas at Austin. It is

a "research" implementation of the SSID Algorithm with Model Reduction

(SSID-MR).

7. EBr4 (6/2/96)

Z
Z
7.
7.
Z
Z
Z
Z
7.
Z

Z
Y, Set Parameters:

Z
Z
Z
Z
Z
Z
Z
Z
clear

***Minv*K and Minv*C from Single Test***

*** M, C, and K

*Damped System and No Noise

*Ordinary LS Estimate Based on [M +I/(3*W)C -I/W'2*K]A=P.

*Ordinary LS Estimate Based on Complex Data and also on R/I data.

*THREE Active Forces, F, Used to Generate Response

Vectors, X, and NO Reaction Forces, R.

*Modification of WC32 for use with larger models, PSI (52 DOF).
*NO Test Stand

*Active Forces and Reactions Enter into Final Estimate of Minv*K
and Minv*C.

ne = No. excitation freqs. (squared)

nx = No. of D0F of Substructure Model

nf = No. of Active Forces

nr = No. of Reactions

ns = No. of States

nb = No. of DOF of Substructure and Test Stand

nsample = No. of samples of exitation source

rand('seed',0);
echo off

load /home/Erad/shawnvdw/blades/psl.ma t

(? =#of measurements)

Load in M and K
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7.
na=size (KA, I) ;

df =.02; Z Damping Factor

[phia,eiga]--massnorm(KA,MA) ; 7. Mass-normalize evecs

freqa=sqrt (eiga) / (2*pi) ; w=sqrt (eiga) ;

[CA,zetaa]=damping(MA,KA,ones(na,l)*df) ; 7. Modal damping matrix

7.
7. Forced DOF: i0 22 and 50

7. Reaction DOF: NONE

fdof=[10 22 50];

nf =3 ;

nr=O;

nd=nf +nr;

Z
7. "Preserve" these modes of the "A" Structure

7_nodes= [1 :52] ; 7. All modes

modes=[l:10,17,18,21,22,29,30]; 7. 16 D0F Model

7_nodes=[l:10,17,18]; 7. 12 D0F Model

7_nodes=[l :I0] ; 7. I0 D0F Model

7.
7. D0F to 0MIT from the Model--All the X and Y Rotations

rdof=eidv(phia( :,modes), [I :ha] ',length(modes)) ;

odof=omitdof (ha, rdof) ;

7.
7. D0F to RETAIN from the Model

[rdof, ridof, frdof ]=keptdof (ha, odor, fdof (1 :nf ), fdof (nf+ 1 :nd) ) ;

Zrdof=[1:52] ; frdof=fdof; 7. All modes

7.
7. Size of the substructure to identify

nx=length (rdof) ;

ns=2*nx ;

7.
7. Input Test Frequencies

ne=512; 7. Number of excitation freqs

deltaf=l ;

for count=1 :I

fmin=1.0 ;

fmax=300; 7. max frequency for test

Freq=l inspace (fmin, fmax, ne) ;

[Freq(1) Freq(ne) Freq(2)-Freq(1) ne]

W=Freq_2*pi ;

W2=W. "2;

7.
7. Noise parameters
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nsample=l ;

magnoise=0 ;

phnoise=0 ;

toll=le-10;

tol2=le-10;

7.
_, Initialize

DA=zeros (na, (nf+nr)) ;

DAr=zeros (nx, (nf+nr)) ;

for n=l :nd

k=fdof (n) ;

DA(k,n)=l;

k=frdof (n) ;

DAr(k,n)=l;

end

7.
7.variables=[nf, nsample, magnoise, phnoise, toll, to12];

7.[KHA, CTHETAE, CLAMAE, AA, Hrf ]=stls (Freq, MA, CA, KA, rdof, fdof, [], variables) ;
7.
7. Form Frequency-Response Vectors (Direct Solution)

[AB ,P] =frfdirect (W,MA ,CA,KA,DA) ;

7.
7. Simulate Noise

Y.[ABn, Pn] =applynoise (AB, P ,nsample ,magnoise, phnoise) ;

ABn=AB ; Pn=P;

7. Remove Response Vectors Corresponding to "A" Structure

AA=ABn (rdof, :) ;

7.

7. Form Velocity and Displacement FRFs

[AA,VA,XA,Hff] =calvxf (AA, Pn,Freq) ;
7.

VXFA=[VA;XA;-Hff]; Y, LHS of Eqn 3.7
7.
Y, Form Real/Imaginary Partitions

AA2= [real (AA) imag (AA) ] ; Y. RHS of Eqn 3.7

VXFA2= [real (VXFA) imag (VXFA) ] ;
7.

Y. Step l--Identification of M'-IK and M'-IC and the resulting eigensolution
7. Solve Equation 3.7

CKDAE2=-AA2/VXFA2 ;

7.
7. Complex Eigensolution Based on Estimated Minv*C and Minv*K

CHA=CKDAE2 ( :,1 :nx) ;
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KHA=CKDAE2( : ,nx+l :ns) ;
%
7. Equation 3.11

ASAHATE = [CHA eye (nx) ;eye (nx) zeros (nx) ] ;

BSAHATE = [KHA zeros (nx) ; zeros (nx) -eye (nx)] ;

%
7. Equation 3.12; Lambda=LambdaHat

[CTHETAE, CLAMAE] =eig (-BSAHATE, ASAHATE) ;

[CTHETAE, CLAMAE] =eigensorti (CTHETAE, diag (CLAMAE)) ;

%
[phikm, eigkm] =eig (KHA) ;

[phikm, eigkm] =eigensortr (phikm, diag (eigkm)) ;
zetass=-real (CLAMAE)./abe (CLAMAE) ;

omegss=imag (CLAMAE) ./sqrt (l-zetass. "2) ;

[CLAMAE(I :nx) CLAMAE(nx+I :ns)] ;

[zetaa(modes) zetass(l :nx)]

[freqa(modes) omegss (I :nx) / (2*pi) sqrt (eigkm) / (2*pi) ] ,

freqmk ( :,count) =sqrt (eigkm) / (2*pi) ;

freqss ( :,count) =omegss (I :nx) / (2*pi) ;

end

%
7. Make room, clear some variables

clear CKDAE2 VXFA2 AA2 ASAHATE BSAHATE ABn P Pn

%
7. Step 2--Identification of M, C, and K

%
7. Estimation of Inverse Generalized Modal Parameters a_r

7. Equation 3.23

CTX=CTHETAE (I :nx, :) ;

7.
[E, Y] =caley (AA, CLAMAE, CTX, DAr, Freq) ;

7.
7. Inverse Generalized Mass Estimation

7. Solving Equation 3.23 for 1/~a.

7.
GASAIE=E\Y;

clear E Y CTX

7.
7. Estimated Generalized Modal Parameter Vector -- a r

GASAE= 1./GASAIE;

7.
7. Estimated Generalized Modal Parameter Vector -- b r

7. Solving Equation 3.25 for "b.

GBSAE=-CLAMAE. *GASAE;
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7.

7. Forming (Thetahat)--1

CTHI=inv (CTHETAE) ;

Z
7. Estimated State-variable A Matrix

7. Equation 3.26a

ASAE=CTHI. '*diag (GASAE) *CTHI ;

7.
7. Estimated State-variable B Matrix

7. Equation 3.26b

BSAE=CTHI. '*diag (GBSAE) *CTHI ;
Z

7. Extract System Matrices

Ml=rmvsm(real (ASAE), 1 ,nx+l ,nx ,nx) ;

M2=rmvsm(real (ASAE) ,nx+l, 1 ,nx ,nx) ;

M3=-rmvsm(real (BSAE) ,nx+l ,nx+1 ,nx ,nx) ;

M=M3;

C=rmvsm(real (ASAE), I, 1 ,nx,nx) ;

K=rmvsm(real (BSAE), i, 1 ,nx ,nx) ;

C2=damping (M, K, zetass (I :nx) ) ;

[phie, eige] =eig (K, M) ;

[phie, eige] =eigensortr (phie, diag (eige)) ;
for k=l :nx

phie ( :,k) =real (phie (:,k)/sqrt (sum(phie ( :,k). "2) )) ;
end

freqe=sqrt (eige) / (2*pi) ;

masse=sum(sum(M) );

m=diag (phie '*M*phie) ;

c=diag (phie '*C*phie) ;

k=diag (phie '*K*phie) ;

zetae=c. /(2*m. *sqrt (eige)) ;

mace=mac (phia (rdof, 1:30), phie) ;

[y, ind] --max (mace) ;

7.[zetaa(modes) zetae]

[freqa(modes) freqe]

[y; ind]

7.

7. Compare FRF's (due to force I) to exact

f=l;

Freqp=logspace (log10 (. 5), logl0 (2500), 512) ; Wp=Freqp.2.pi ;

[AAp,p] =frfdirect (Wp,MA,CA,KA,DA ( :,f) ),

[AAe, p] =frfdirect (Wp, M, C, K, DAr (:,f) ) ;

[AAe2 ,p] =f rfdirect (Wp ,M, C2, K ,DAr (:,f) ) ;

fig%ire (1)
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loglog (Freqp, abs (AAp (fdof (f) , :) ) ,Freqp, abs (AAe (f rdof (f) , :) ) , 'g-. ')

hold on

loglog(Freqp,abs(AAe2(frdof (f) , :)) , 'r. ')

hold off

A.3 MATLAB Output Diary for 16 DOF, No Noise,

300 Hz

ans =

1.0000

ans -

300.0000 0.5851 512.0000

0.02

0.02

0.02

0.02

0.02

0.02

0.02

0.02

0.02

0.02

0.02

0.02

0.02

0.02

0.02

0.02

0.02000

0.02000

0.02000

0.02000

0.02000

0.02000

0.02000

0.02000

0.02000

0.02000

0.02000

0.01996

0.01775

0.02024

0.02135

0.02094

Frequency Input Spectrum
Table 6.3 row #1

Estimated Damping Factors

Table 6.9 columns #1,2
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ans -

1.1564 1.1564

6.0642 6.0642

10.783 10.783

18.127 18.127

109.49 109.49

127.14 127.14

137.82 137.82

156.87 156.87

297.66 297.66

304.47 304.47

606.45 606.15

631.08 613.54

1190.4 1047.1

1193.3 1159.3

2029.1 1526.7

2031.2 1682.3

Estimated Natural Frequencies

Table 6.8 columns #1,2

ans = Maximum MAC Values

Table 6.10 columns #2,3

Columns 1 through 7

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

1.0000 2.0000 3.0000 4.0000 5.0000 6.0000 7.0000

Columns 8 through 14

1.0000 1.0(0 1.0000 0.9987 0.9344 0.6239 0.6639

8.0000 9.0000 10.0000 17.0000 18.0000 20.0000 21.0(0

Columns 15 through 16

0.6561 0.6063

16.0000 27.0000


